
Save 37% off Functional Programming in C++ with code fcccukic
at manning.com.

Functional Design for Concurrent Systems
by Ivan Čukić

The biggest problem in software development is handling com-
plexity. Software systems tend to grow significantly over time
and they quickly outgrow the original designs. When it turns
out that the features that need to be implemented collide with
the design, we must either re-implement significant portions of
the system or introduce horrible quick-and-dirty hacks to make
things work.

This problem with complexity becomes more evident in software which has different parts
that execute concurrently – from the simplest interactive user applications, to network ser-
vices and distributed software systems.

“A large fraction of the flaws in software development are due to programmers
not fully understanding all the possible states their code may execute in. In a
multithreaded environment, the lack of understanding and the resulting prob-
lems are greatly amplified, almost to the point of panic if you are paying atten-
tion.”
– John Carmack - In-depth: Functional programming in C++

Most of these problems come from the entanglement of different system components. Hav-
ing separate components that access andmutate the same data requires synchronizing said
access. This synchronization is traditionally handledwithmutexes or similar synchronization
primitives, which works, but it introduces significant scalability problems and it kills concur-
rency.

One approach to solving the problem of sharedmutable data is not having anymutable data
whatsoever. But there’s another option – to have mutable data, but never to share it.

The actor model – thinking in components

In this article, we’ll see how to design the software as a set of isolated separate components.
We’ll first need to discuss this in the context of object-oriented design in order to later see
how we can make it functional.

When designing classes, we tend to create getter and setter functions  – getters to retrieve
information about an object, and setters to change attributes of an object in a valid way
which won’t violate the class invariants.

Many object-oriented design proponents consider this approach to be contrary to the philos-
ophy of OO. They tend to call it procedural programming because we still think in algorithm
steps, and the objects serve as containers and validators for the data.

Step one in the transformation of a successful procedural developer into a suc-

1

https://cukic.co/to/fp-in-cpp
https://cukic.co/to/fp-in-cpp

cessful object developer is a lobotomy.
– David West - Object Thinking

Instead, we should stop thinking about what data an object contains, and think about what
it can do. As an example, consider a class which represents a person. The way we’d usually
implement it is to create getters and setters for the name, surname, age andother attributes.
Then, we could do something like:

d o u g l a s . s e t _ a g e (4 2) ;

And this shows the problem. We’ve designed a class to be a data container, instead of de-
signing it to behave like a person. Can we force a human being to be 42 years old? We can’t.
We can’t change the age of a person, and we shouldn’t design our classes to allow us to do
this.

Figure 1: We can't set the attributes on real-life objects. We can send them messages, and let
them react to them.

We should design the classes with a set of actions or tasks they can perform, and then add
the data necessary to implement those actions. In the case of the class which models a
person, instead of having a setter for the age, we’d need to create an action to tell the person
that some time has passed, and the object should react appropriately. Instead of s e t _ a g e ,
the object could have a member function t i m e _ p a s s e d like so:

v o i d t i m e _ p a s s e d (c o n s t s t d : : c h r o n o : : d u r a t i o n & t i m e) ;

When notified that the specified time has passed, the person object can increase its age,
but also perform other related changes. For example, if this is relevant to our system, the
person’s height could be changed, the hair color etc. as the result of the person getting
older. Therefore, instead of having getters and setters, we’d only have a set of tasks that
that the object knows how to perform.

Don’t ask for the information you need to do the work; ask the object that has the
information to do the work for you.
– Allen Holub

If we continue to model the person object after real-life people, we’ll also come to a realiza-
tion that multiple-person objects shouldn’t have any shared data. Real people share data
by talking to each other; they don’t have shared variables which everyone can access and
change. This is exactly the idea behind actors. In the actor model, actors are completely
isolated entities which share nothing, but which can send messages to one another. At a
minimum an actor class should have a way to receive and send messages.

Traditionally, actors can send and receive different types of messages, and each actor can

2

Figure 2: An actor is an isolated component that can receive and send messages. It processes the
messages serially, and for each message it can change its state or behavior, or it can send a new
message to another actor in the system.

choose which actor to send the message to. Also, the communication should be asyn-
chronous.

C++ Actor Framework

You can find a complete implementation of the traditional actor model for C++ at http://actor-
framework.org/ which you can use in your projects.
The C++ Actor Framework has an impressive set of features. The actors are lightweight concur-
rent processes (much more lightweight than threads) and it’s network-transparent, meaning
that you can distribute your actors over multiple separate machines and things will work with-
out the need to change your code.
Although traditional actors aren’t easily composed, they can easily bemade to fit into the design
we’ll cover in this article.

We’re going to define a more rudimentary actor compared to actors as specified by the ac-
tor model and actors in the C++ Actor Framework because we want to focus more on the
software design than on implementing a true actor model. Although the design of actors
presented in this article differs from the design of actors in the traditional actor model, the
concepts which will be presented are applicable evenwith the traditional actors. We’re going
to design our actors:

• To be typed actors – actors that can receive only messages of a single type, and send
messages of a single (not necessarily the same) type. If we need to support multiple
different types for input or output messages, we can use std::variant or std::any.

• Instead of allowing each actor to choose to whom to send a message, we’ll leave this
choice to an external controller whichwill allow us to compose the actors in a functional
way. The external controller schedules which sources an actor should listen to.

• We’ll leave it up to the external controller to decide which messages should be pro-
cessed asynchronously and which not

Most software systems nowadays use or implement some kind of event loop which can be
used to asynchronously deliver messages, and we won’t concern ourselves here with imple-
menting such a system – we’ll focus on the software design which can easily be adapted to
work on any event-based system.

3

Figure 3: We'll use simplified typed actors that don't carewho sends themessage towhombecause
this is left to an external controller.

t e m p l a t e < t y p e n a m e S o u r c e M e s s a g e T y p e , An actor can receive messages of one,
t y p e n a m e M e s s a g e T y p e > and send messages of another type

c l a s s a c t o r {

p u b l i c :

u s i n g v a l u e _ t y p e = M e s s a g e T y p e ; Defines the type of the message the actor's
sending, allowing us to check it when we
need to connect the actors to one another

v o i d p r o c e s s _ m e s s a g e (S o u r c e M e s s a g e T y p e & & m e s s a g e) ; Handles when a new
message arrives

t e m p l a t e < t y p e n a m e E m i t F u n c t i o n >

v o i d s e t _ m e s s a g e _ h a n d l e r (E m i t F u n c t i o n e m i t) ; Sets the m_emit handler
which the actor calls

p r i v a t e : when it wants to
s t d : : f u n c t i o n < v o i d (M e s s a g e T y p e & &) > m _ e m i t ; send a message

} ;

With this interface, we’re clearly stating that an actor knows only how to receive a message,
and how to send amessage onwards. It can have asmany private data as it needs to perform
its work, but none of it should ever be available to the outside world. Because the data can’t
be shared, we have no need to synchronize it.

It’s important to note that there can be actors that only receive messages (usually called
sinks), actors that only send messages (usually called sources) and general actors that do
both.

That’s all for now. If you’re hungering for more new insights into how you can leverage
functional programming techniques to write better C++ code, have a look at the first chapter
of Functional Programming in C++ and see this slide deck.

4

https://livebook.manning.com/#!/book/functional-programming-in-cplusplus/chapter-1/v-11/
https://livebook.manning.com/#!/book/functional-programming-in-cplusplus/chapter-1/v-11/
https://www.slideshare.net/ManningBooks/functional-programming-in-c-69464417

