
Reactive functional and imperative C++

Ericsson, Budapest 2015

Ivan Čukíc

KDE University of Belgrade
ivan.cukic@kde.org ivan@math.rs

Futures The functional side The imperative side Further evolution of C++ Epilogue

About me

KDE development
Talks and teaching
Functional programming enthusiast, but not a purist

2

Futures The functional side The imperative side Further evolution of C++ Epilogue

Disclaimer

Make your code readable. Pretend the next person
who looks at your code is a psychopath and they know
where you live.

Philip Wadler

3

Futures The functional side The imperative side Further evolution of C++ Epilogue

Disclaimer

The code snippets are optimized for presentation, it is not
production-ready code.
std namespace is omitted, value arguments used instead of const-refs or
forwarding refs, etc.

4

.

Futures The functional side The imperative side Further evolution of C++ Epilogue

Why C++

6

FUTURES

Concurrency

Futures

Futures The functional side The imperative side Further evolution of C++ Epilogue

Concurrency

Threads
Multiple processes
Distributed systems

Note: "concurrency" will mean that different tasks are executed at
overlapping times.

8

Futures The functional side The imperative side Further evolution of C++ Epilogue

Plain threads are bad

A large fraction of the flaws in software development
are due to programmers not fully understanding all the
possible states their code may execute in. In a
multithreaded environment, the lack of understanding
and the resulting problems are greatly amplified,
almost to the point of panic if you are paying attention.

John Carmack
In-depth: Functional programming in C++

9

Futures The functional side The imperative side Further evolution of C++ Epilogue

Plain threads are bad

Threads are not composable
Parallelism can’t be ‘disabled’
Difficult to ensure balanced load manually

Hartmut Kaiser
Plain Threads are the GOTO of Today’s Computing

10

Futures The functional side The imperative side Further evolution of C++ Epilogue

Plain synchronization primitives are bad

You will likely get it wrong
S.L.O.W. (starvation, latency, overhead, wait)

Sean Parent
Better Code: Concurrency

11

Futures The functional side The imperative side Further evolution of C++ Epilogue

Amdahl’s Law

1
(1−P)+ PN

12

Futures The functional side The imperative side Further evolution of C++ Epilogue

Locks are the main problem

The biggest of all the big problems with recursive mutexes is that
they encourage you to completely lose track of your locking scheme
and scope. This is deadly. Evil. It’s the "thread eater". You hold locks
for the absolutely shortest possible time. Period. Always. If you’re
calling something with a lock held simply because you don’t know it’s
held, or because you don’t know whether the callee needs the mutex,
then you’re holding it too long. You’re aiming a shotgun at your
application and pulling the trigger. You presumably started using
threads to get concurrency; but you’ve just PREVENTED concurrency.

I’ve often joked that instead of picking up Djikstra’s cute
acronym we should have called the basic synchronization
object "the bottleneck". Bottlenecks are useful at times,
sometimes indispensible – but they’re never GOOD.

David Butenhof
Re: recursive mutexes

13

Futures The functional side The imperative side Further evolution of C++ Epilogue

Reasons for Waiting

User input
Network actions
Inter-process
communication
External process
execution
Communication with
a slow database
CPU-intensive work
Heterogeneous
computing
...

14

Futures The functional side The imperative side Further evolution of C++ Epilogue

Hiding it all

Wrapping it in task objects (QThread, KJob, ...)
Methods with time-outs (select, ...)
... or with validity checks (QProcess::state, ...)
Actor-based systems
Future values (future<T>, QFuture<T>,

QDBusPendingReply<T>, ...)
Message streams

15

Futures The functional side The imperative side Further evolution of C++ Epilogue

Futures

Futures should be the lowest level concurrency abstractions.

std::future
boost::future
QFuture
Folly Future

any continuation - *.then([] . . .)

16

Futures The functional side The imperative side Further evolution of C++ Epilogue

Future

T value = function();

future<T> value = function(); . . .; value.get();)

17

Futures The functional side The imperative side Further evolution of C++ Epilogue

Future

future<T> value = function(); . . .; value.get();

future<T2> value = function().then(continuation);

18

Futures The functional side The imperative side Further evolution of C++ Epilogue

Futures

get_page("http://people.inf.elte.hu/cefp/")
.then(

[] (auto result) {
cout << result.headers();

}
)

19

Futures The functional side The imperative side Further evolution of C++ Epilogue

Futures

get("http://people.inf.elte.hu/cefp/")
.then(

[] (auto result) {
cout << result.headers();

for (image: result.image_tags) {
image.get().then(

[] (auto image_result) {
// do something
// with image_result.
// If it needs to be
// forwarded, auto&&

}
);

}
}

)
20

THE FUNCTIONAL SIDE

STL algorithms

Ranges

Futures The functional side The imperative side Further evolution of C++ Epilogue

Ranges in C++

vector<int> xs;
int sum = 0;

for (x: xs) {
sum += x;

}

return sum;

22

Futures The functional side The imperative side Further evolution of C++ Epilogue

Ranges in C++

return accumulate(
xs.cbegin(), xs.cend(),
0
);

23

Futures The functional side The imperative side Further evolution of C++ Epilogue

Ranges in C++

return accumulate(
xs.cbegin(), xs.cend(),
1,
_1 * _2
);

24

Futures The functional side The imperative side Further evolution of C++ Epilogue

Ranges in C++

How to do an aggregation on a transformed list?

vector<int> xs;
int sum = 0;

for (x: xs) {
sum += x * x;

}

return sum;

25

Futures The functional side The imperative side Further evolution of C++ Epilogue

Ranges in C++

How to do an aggregation on a transformed list?

sum $ map (λ x → x * x) xs

26

Futures The functional side The imperative side Further evolution of C++ Epilogue

Ranges in C++

How to do an aggregation on a transformed list?

vector<int> temp;

std::transform(
xs.cbegin(), xs.cend(),
std::back_inserter(temp),
_1 * _1
);

return std::accumulate(
temp.cbegin(),
temp.cend()
);

27

Futures The functional side The imperative side Further evolution of C++ Epilogue

Ranges in C++, boost.range, N4128

How to do an aggregation on a transformed list?

return accumulate(xs | transformed(_1 * _1));

28

Futures The functional side The imperative side Further evolution of C++ Epilogue

Example

transactions
| filter(Transactions::price() > 1000)
| groupBy(Transactions::customerId())
| sort(

Transactions::price().desc() |
Transactions::customerName()

);

29

Futures The functional side The imperative side Further evolution of C++ Epilogue

Example boilerplate

namespace Transactions {
struct Record {

int customerId;
. . .

};

DECL_COLUMN(customerId)
. . .

}

Column meta-type has all operators implemented, asc(),
desc(), etc.

30

Futures The functional side The imperative side Further evolution of C++ Epilogue

Just passing our time

31

Futures The functional side The imperative side Further evolution of C++ Epilogue

Oh we’ll keep on trying

32

Futures The functional side The imperative side Further evolution of C++ Epilogue

Flow of information

33

Futures The functional side The imperative side Further evolution of C++ Epilogue

Through the eons, and on and on

Web server client connection requests
User interface events
Database access
I/O
Anything and everything

34

Futures The functional side The imperative side Further evolution of C++ Epilogue

Till the end of time

Message passing:
continuation!newClientMessage
Call-callback:
onNewMessage(continuation)
Signals-slots:
connect(socket, &Socket::newConnection,

receiver, &Receiver::continuation)
Any data collection:
for_each(xs, continuation)

35

Futures The functional side The imperative side Further evolution of C++ Epilogue

Stream transformation

Streams can only be transformed with algorithms that accept
input ranges.

map, bind, filter, take, drop, etc.

36

Futures The functional side The imperative side Further evolution of C++ Epilogue

Stream transformation

37

Futures The functional side The imperative side Further evolution of C++ Epilogue

Map / Transform

We have a stream of 2D coordinates (mouse coordinates).

// Projecting on the x-axis
mouse_position >>=

map(λ point → (point.x, 0))

// Projecting on the y-axis
mouse_position >>=

map(λ point → (0, point.y))

38

Futures The functional side The imperative side Further evolution of C++ Epilogue

Implementation detail

namespace stream {
template <typename Stream, typename Cont>
auto operator >>= (Stream &&stream,

Cont &&cont)
{

return stream.then(cont);
}

template <typename Under>
auto make_stream(Under &&under);

}

39

Futures The functional side The imperative side Further evolution of C++ Epilogue

Map

template <typename Func, typename Cont>
struct map_cont {

map_cont(Func f, Cont c) : f(f), c(c) { }

template <typename InType>
void operator () (const InType &in) {

c(f(in));
}

Func f;
Cont c;

};

40

Futures The functional side The imperative side Further evolution of C++ Epilogue

Fork (or parallel), tee

tee(print) >>=
fork(

receiver1,
receiver2

)

41

Futures The functional side The imperative side Further evolution of C++ Epilogue

Fork (or parallel), tee

template <typename ... Conts>
struct fork_impl;

template <typename Cont, typename ... Conts>
struct fork_impl<Cont, Conts...>: fork_impl<Conts...>
{

using parent_type = fork_impl<Conts...>;

fork_impl(Cont c, Conts... cs)
: parent_type(cs...), c(c)

{ }

template <typename InType>
void operator() (const InType &in) {

c(in);
parent_type::operator()(in);

}

Cont c;
};

42

Futures The functional side The imperative side Further evolution of C++ Epilogue

Stateful function objects

class gravity_object {
public:

gravity_object() { }

template <typename Cont>
void then(Cont &&c) { _f = std::forward<Cont>(c); }

QPointF operator() (const QPointF &new_point) {
m_point.setX(m_point.x() * .99 + new_point.x() * .01);
m_point.setY(m_point.y() * .99 + new_point.y() * .01);
return m_point;

}

private:
std::function<void(QPointF)> _f;
QPointF m_point;

};

43

Futures The functional side The imperative side Further evolution of C++ Epilogue

Stateful function objects

44

Futures The functional side The imperative side Further evolution of C++ Epilogue

Can stateful function objects be pure?

Like actors changing behaviour
Or, treating the function object like its argument is the
past part of the stream (a finite list of elements)

45

Futures The functional side The imperative side Further evolution of C++ Epilogue

Filter

bool pointFilter(const QPointF &point) {
return int(point.y()) % 100 == 0;

}

events >>=
filter(predicate) >>=

. . .

46

Futures The functional side The imperative side Further evolution of C++ Epilogue

Flat map

template <typename Func, typename Cont>
struct flatmap_cont {

flatmap_cont(Func f, Cont c)
: f(f)
, c(c)

{
}

template <typename InType>
void operator () (const InType &in) {

boost::for_each(f(in), c);
}

Func f;
Cont c;

};
47

Futures The functional side The imperative side Further evolution of C++ Epilogue

Flat map
class more_precision {
public:

more_precision() { }

template <typename Cont>
void then(Cont &&c) { _f = std::forward<Cont>(c); }

std::vector<QPointF> operator() (const QPointF &new_point) {
std::vector<QPointF> result;

int stepX = (m_previous_point.x() < new_point.x()) ? 1 : -1;
for (int i = (int)m_previous_point.x(); i != (int)new_point.x(); i += stepX) {

result.emplace_back(i, m_previous_point.y());
}

int stepY = (m_previous_point.y() < new_point.y()) ? 1 : -1;
for (int i = (int)m_previous_point.y(); i != (int)new_point.y(); i += stepY) {

result.emplace_back(new_point.x(), i);
}

m_previous_point = new_point;
return result;

}

private:
std::function<void(QPointF)> _f;
QPointF m_previous_point;

};

48

THE IMPERATIVE SIDE

The problem

Schedulers

Set Your Controls for the Heart of the Sun

Futures The functional side The imperative side Further evolution of C++ Epilogue

The problem

50

Futures The functional side The imperative side Further evolution of C++ Epilogue

The problem

void login()
{

user = get_username();

new_user = !check_if_user_exists(user);

if (new_user) {
pass = get_password();
initialize_account(uame, pass);

} else do {
pass = get_password();

} while (!check_user(user, pass));

initialize_environment();

if (new_user) show_welcome_message();
}

51

Futures The functional side The imperative side Further evolution of C++ Epilogue

The problem

void login() { get_username(on_got_username); }

void on_got_username(. . .) {
new_user = !check_if_user_exists(user);
if (new_user) {

get_password(on_got_password);
} else { . . . }

}

void on_got_password(. . .) {
check_user(user, password, on_user_checked);

}

void on_user_checked(. . .) {
if (!user_valid) {

on_got_username(user);
} else {

initialize_environment(on_environment_initialized);
}

}

. . .
52

Futures The functional side The imperative side Further evolution of C++ Epilogue

Inversion of Control

53

Futures The functional side The imperative side Further evolution of C++ Epilogue

Inversion of Control

“Spaghetti code” by George W. Hart
54

Futures The functional side The imperative side Further evolution of C++ Epilogue

The Chains are On

getUsername().then(
[] (future<string> username) {

getPassword().then(
[=] (future<string> password) {

createAccount(username, password).then(
. . .

);
}

);
}

);

Localized, but still not readable. Can it be made nicer?

55

Futures The functional side The imperative side Further evolution of C++ Epilogue

The Chains are On

Can it be made to look like this?

void login()
{

. . .
username = getUsername();
password = getPassword();
createAccount(username, password);

}

No, but ...

56

Futures The functional side The imperative side Further evolution of C++ Epilogue

The Chains are On

... it could look like this:

auto login = serial_
(

...
username = getUsername(),
password = getPassword(),
createAccount(username, password)

);

Peculiar syntax, but much more readable than the call-callback
solution.

57

Futures The functional side The imperative side Further evolution of C++ Epilogue

Let There be More Light

while loop:

while_(condition) (
body

)
branching:

if_(condition) (
then_branch

).else_(
else_branch

)

58

Futures The functional side The imperative side Further evolution of C++ Epilogue

Let There be More Light

asynchronous operators
var<int> value;

value = 5; // immediate assignment
value = someFuture(); // asynchronous assignment

parallel execution
parallel_(

task1,
task2,
. . .

)

parallel without waiting
detach_(task)

producer-consumer
for_each(clients, process_client);

transactions
etc.

59

Futures The functional side The imperative side Further evolution of C++ Epilogue

Let There be More Light

operator(bool) // or start and undo

transaction_(
task1,
task2,
. . .
taskn
);

60

Futures The functional side The imperative side Further evolution of C++ Epilogue

Set Your Controls...

var<int> wait;

serial_(
test::writeMessage(0, "Starting the program"),

wait = test::howMuchShouldIWait(7),
test::writeMessageAsync(wait,

"What is the answer to the Ultimate Question of Life, "
"the Universe, and Everything?"

),

while_(test::howMuchShouldIWait(0),
test::writeMessageAsync(1, "42")

),

serial_(
test::writeMessageAsync(1, "We are going away..."),
test::writeMessageAsync(1, "... sorry, but we have to.")

),

test::writeMessage(0, "There, you have it!")
)();

61

Futures The functional side The imperative side Further evolution of C++ Epilogue

... for the Heart of the Sun

while_(
// Wait until we get a connection.
client = ws::server::accept(server),

// Start a detached execution path to process the client.
detach_([] {

var<ws::client_header> header;
var<ws::message> message;
var<string> server_key;

serial_(
// WebSocket handshake
header = ws::client::get_header(),
server_key = ws::server::create_key(header),
ws::client::send_header(client, server_key),

// Sending the initial greeting message
ws::client::message_write(client, "Hello, I'm Echo"),

// Connection established
while_(

// getting and echoing the message
message = ws::client::message_read(client),
ws::client::message_write(client, message)

)
)

})
)

62

FURTHER EVOLUTION OF C++

Ranges

Await

Futures The functional side The imperative side Further evolution of C++ Epilogue

Ranges

Some call it STL 2.o, provides separate views and actions
Filter a container using a predicate and transform it.

std::vector<int> vi{1,2,3,4,5,6,7,8,9,10};
auto rng = vi | view::remove_if([](int i){return i % 2 == 1;})

| view::transform([](int i){return std::to_string(i);});

Generate an infinite list of integers starting at 1, square them, take the first 10, and sum them:

int sum = accumulate(view::ints(1)
| view::transform([](int i){return i*i;})
| view::take(10), 0);

Generate a sequence on the fly with a range comprehension and initialize a vector with it:

std::vector<int> vi =
view::for_each(view::ints(1,10), [](int i){

return yield_from(view::repeat(i,i));
});

64

Futures The functional side The imperative side Further evolution of C++ Epilogue

Monadic await

result = await get(. . .);

for (image: result.image_tags) (
image_result = await image.get();
// do something with image_result
. . .

)

65

Futures The functional side The imperative side Further evolution of C++ Epilogue

Monadic await

await expression is equivalent to:

{
auto && tmp = <expr>;
if (!await_ready(tmp)) {

await_suspend(tmp, continuation);

}
return await_resume(tmp);

}

66

Futures The functional side The imperative side Further evolution of C++ Epilogue

Answers? Questions! Questions? Answers!

Kudos:

Friends at KDE, Dr Saša Malkov, basysKom

Worth reading and watching:

Iterators Must Go, Andrei Alexandrescu
Value Semantics and Range Algorithms, Chandler Carruth
Systematic Error Handling in C++, Andrei Alexandrescu
Await 2.o, Gor Nishanov
Ranges proposal, Eric Niebler
Reactive manifesto, Books on Erlang or Scala/Akka

67

	Futures
	Concurrency
	Futures

	The functional side
	STL algorithms
	Ranges

	The imperative side
	The problem
	Schedulers
	Set Your Controls for the Heart of the Sun

	Further evolution of C++
	Ranges
	Await

