
Reactive programming and Qt

Qt World Summit, Berlin 2015

Ivan Čukíc

ivan.cukic@kde.org
http://cukic.co



Reactive Continuations Ranges Streams Epilogue

About me

KDE development
Talks and teaching
Functional programming enthusiast, but not a purist

2



Reactive Continuations Ranges Streams Epilogue

Disclaimer

Make your code readable. Pretend the next person
who looks at your code is a psychopath and they know
where you live.

Philip Wadler

3



Reactive Continuations Ranges Streams Epilogue

Disclaimer

The code snippets are optimized for presentation, it is not
production-ready code.
std namespace is omitted, value arguments used instead of const-refs or
forwarding refs, etc.

4



REACTIVE



Reactive Continuations Ranges Streams Epilogue

What is reactive?

We believe that a coherent approach to systems
architecture is needed, and we believe that all
necessary aspects are already recognised individually:
we want systems that are Responsive, Resilient, Elastic
and Message Driven. We call these Reactive Systems.
Systems built as Reactive Systems are more flexible,
loosely-coupled and scalable. This makes them easier
to develop and amenable to change. They are
significantly more tolerant of failure and when failure
does occur they meet it with elegance rather than
disaster. Reactive Systems are highly responsive, giving
users effective interactive feedback.

Reactive Manifesto 2.0

6



.



Reactive Continuations Ranges Streams Epilogue

What is reactive?

Showing a response to a stimulus

Oxford Dictionary

8



Reactive Continuations Ranges Streams Epilogue

What is reactive?

C: event call-backs
Java: event listeners
C++/Qt: signals and slots

even IO streams?

9



Reactive Continuations Ranges Streams Epilogue

What is reactive?

No shared state
Separate isolated components
Communication only through message passing

10



Reactive Continuations Ranges Streams Epilogue

Reactive programming

connect(mouse, SIGNAL(mouseMoved(int, int)),
widget, SLOT(resize(int, int)));

11



Reactive Continuations Ranges Streams Epilogue

Reactive programming

connect(mouse, SIGNAL(mouseMoved(int, int)),
widget, SLOT(setWidth(int)));

12



Reactive Continuations Ranges Streams Epilogue

Reactive programming

Rectangle {
width: mouse.x
height: mouse.y

}

MouseArea {
id: mouse
. . .

}

13



Reactive Continuations Ranges Streams Epilogue

Functional reactive programming

Rectangle {
width: Math.sin(mouse.x - mouse.width / 2)
height: Math.cos(mouse.y - mouse.height / 2)

}

MouseArea {
id: mouse
. . .

}

Connections {
. . .

}

14



Reactive Continuations Ranges Streams Epilogue

Functional reactive programming

Timer {
id: delayedStatusUpdate
interval: 1000
running: true
onTriggered: {

if (!hasBlahBlah) {
item.status = Core.PassiveStatus
return

}

item.status = enabled
? Core.PassiveStatus
: Core.ActiveStatus

}
}

15



Reactive Continuations Ranges Streams Epilogue

Stream processing

16



CONTINUATIONS



Reactive Continuations Ranges Streams Epilogue

Concurrency

Interactive systems
Threads
Multiple processes
Distributed systems

Note: "concurrency" will mean that different tasks are executed at
overlapping times.

18



Reactive Continuations Ranges Streams Epilogue

Plain threads are bad

A large fraction of the flaws in software development
are due to programmers not fully understanding all the
possible states their code may execute in. In a
multithreaded environment, the lack of understanding
and the resulting problems are greatly amplified,
almost to the point of panic if you are paying attention.

John Carmack
In-depth: Functional programming in C++

19



Reactive Continuations Ranges Streams Epilogue

Plain threads are bad

Threads are not composable
Parallelism can’t be ‘disabled’
Difficult to ensure balanced load manually

Hartmut Kaiser
Plain Threads are the GOTO of Today’s Computing

Meeting C++ 2014

20



Reactive Continuations Ranges Streams Epilogue

Plain synchronization primitives are bad

You will likely get it wrong
S.L.O.W. (starvation, latency, overhead, wait)

Sean Parent
Better Code: Concurrency

C++ Russia, 2015

21



Reactive Continuations Ranges Streams Epilogue

Amdahl’s Law

1
(1−P )+ PN

22



Reactive Continuations Ranges Streams Epilogue

Locks are the main problem

The biggest of all the big problems with recursive mutexes is that
they encourage you to completely lose track of your locking scheme
and scope. This is deadly. Evil. It’s the "thread eater". You hold locks
for the absolutely shortest possible time. Period. Always. If you’re
calling something with a lock held simply because you don’t know it’s
held, or because you don’t know whether the callee needs the mutex,
then you’re holding it too long. You’re aiming a shotgun at your
application and pulling the trigger. You presumably started using
threads to get concurrency; but you’ve just PREVENTED concurrency.

I’ve often joked that instead of picking up Djikstra’s cute
acronym we should have called the basic synchronization
object "the bottleneck". Bottlenecks are useful at times,
sometimes indispensible – but they’re never GOOD.

David Butenhof
Re: recursive mutexes

23



Reactive Continuations Ranges Streams Epilogue

Futures

Futures should be the lowest level concurrency abstractions.

std::future
boost::future
QFuture
Folly Future

any continuation - *.then([] . . .)

24



Reactive Continuations Ranges Streams Epilogue

Future

T value = function();

future<T> value = function(); . . .; value.get();)

25



Reactive Continuations Ranges Streams Epilogue

Future

future<T> value = function(); . . .; value.get();

future<T2> value = function().then(continuation);

26



Reactive Continuations Ranges Streams Epilogue

Futures

page("http://qtworldsummit.com/").get()
.then(

[] (auto &&result) {
cout << result.headers();

}
)

27



Reactive Continuations Ranges Streams Epilogue

Futures

page("http://qtworldsummit.com/").get()
.then(

[] (auto &&result) {
cout << result.headers();

for (image: result.image_tags) {
image.get().then(

[] (auto &&image_result) {
// do something
// with image_result

}
);

}
}

)
28



Reactive Continuations Ranges Streams Epilogue

Imperative chaining of futures

result = get("http://qtworldsummit.com/"),
for_(image = result.image_tags) (

image_result = image.get(),
// do something with image_result
. . .

)

29



Reactive Continuations Ranges Streams Epilogue

Imperative chaining of futures
while_(

// Wait until we get a connection.
client = ws::server::accept(server),

// Start a detached execution path to process the client.
detach_([] {

. . .

serial_(
// WebSocket handshake
header = ws::client::get_header(),
server_key = ws::server::create_key(header),
ws::client::send_header(client, server_key),

// Sending the initial greeting message
ws::client::message_write(client, "Hello, I’m Echo"),

// Connection established
while_(

// getting and echoing the message
message = ws::client::message_read(client),
ws::client::message_write(client, message)

)
)

})
)

Check out "Monads in chains" from Meeting C++ 2014
30



RANGES



Reactive Continuations Ranges Streams Epilogue

Ranges in C++

vector<int> xs;
int sum = 0;

for (x: xs) {
sum += x;

}

return sum;

32



Reactive Continuations Ranges Streams Epilogue

Ranges in C++

return accumulate(
xs.cbegin(), xs.cend(),
0
);

33



Reactive Continuations Ranges Streams Epilogue

Ranges in C++

return accumulate(
xs.cbegin(), xs.cend(),
1,
_1 * _2
);

34



Reactive Continuations Ranges Streams Epilogue

Ranges in C++

How to do an aggregation on a transformed list?

vector<int> xs;
int sum = 0;

for (x: xs) {
sum += x * x;

}

return sum;

35



Reactive Continuations Ranges Streams Epilogue

Ranges in C++

How to do an aggregation on a transformed list?

sum $ map (λ x → x * x) xs

36



Reactive Continuations Ranges Streams Epilogue

Ranges in C++

How to do an aggregation on a transformed list?

vector<int> temp;

std::transform(
xs.cbegin(), xs.cend(),
std::back_inserter(temp),
_1 * _1
);

return std::accumulate(
temp.cbegin(),
temp.cend()
);

37



Reactive Continuations Ranges Streams Epilogue

Ranges in C++, boost.range, N4128

How to do an aggregation on a transformed list?

return accumulate(xs | transformed(_1 * _1));

38



Reactive Continuations Ranges Streams Epilogue

Example

transactions
| filter(Transactions::price() > 1000)
| groupBy(Transactions::customerId())
| sort(

Transactions::price().desc() |
Transactions::customerName()

);

39



Reactive Continuations Ranges Streams Epilogue

Example boilerplate

namespace Transactions {
struct Record {

int customerId;
. . .

};

DECL_COLUMN(customerId)
. . .

}

Column meta-type has all operators implemented, asc(),
desc(), etc.

40



STREAMS



Reactive Continuations Ranges Streams Epilogue

Anything you think that you could ever be

for (item: items) {
// do something

}

for_each(items, [] (item i) {
// do something

});

42



Reactive Continuations Ranges Streams Epilogue

Just passing our time

43



Reactive Continuations Ranges Streams Epilogue

Oh we’ll keep on trying

44



Reactive Continuations Ranges Streams Epilogue

Flow of information

45



Reactive Continuations Ranges Streams Epilogue

Through the eons, and on and on

Web server client connection requests
User interface events
Database access
I/O
Anything and everything

46



Reactive Continuations Ranges Streams Epilogue

Till the end of time

Message passing:
continuation!newClientMessage
Call-callback:
onNewMessage(continuation)
Signals-slots:
connect(socket, &Socket::newConnection,

receiver, &Receiver::continuation)
Any data collection:
for_each(xs, continuation)

47



Reactive Continuations Ranges Streams Epilogue

Stream transformation

Streams can only be transformed with algorithms that accept
input ranges, since we don’t have all the items. We don’t even
know when (if) they will end.

map, bind, filter, take, drop, etc.

48



Reactive Continuations Ranges Streams Epilogue

Stream transformation

49



Reactive Continuations Ranges Streams Epilogue

Map / Transform

We have a stream of 2D coordinates (mouse coordinates).

// Projecting on the x-axis
mouse_position >>=

map(λ point → (point.x, 0))

// Projecting on the y-axis
mouse_position >>=

map(λ point → (0, point.y))

50



Reactive Continuations Ranges Streams Epilogue

Implementation detail

namespace stream {
template <typename Stream, typename Cont>
auto operator >>= (Stream &&stream,

Cont &&cont)
{

return stream.then(cont);
}

template <typename Under>
auto make_stream(Under &&under);

}

51



Reactive Continuations Ranges Streams Epilogue

Map

template <typename Func, typename Cont>
struct map_cont {

map_cont(Func f, Cont c) : f(f), c(c) { }

template <typename InType>
void operator () (const InType &in) {

c(f(in));
}

Func f;
Cont c;

};

52



Reactive Continuations Ranges Streams Epilogue

Fork (or parallel), tee

tee(print) >>=
fork(

receiver1,
receiver2

)

53



Reactive Continuations Ranges Streams Epilogue

Fork (or parallel), tee

template <typename ... Conts>
struct fork_impl;

template <typename Cont, typename ... Conts>
struct fork_impl<Cont, Conts...>: fork_impl<Conts...>
{

using parent_type = fork_impl<Conts...>;

fork_impl(Cont c, Conts... cs)
: parent_type(cs...), c(c)

{ }

template <typename InType>
void operator() (const InType &in) {

c(in);
parent_type::operator()(in);

}

Cont c;
};

54



Reactive Continuations Ranges Streams Epilogue

Stateful function objects

class gravity_object {
public:

gravity_object() { }

template <typename Cont>
void then(Cont &&c) { _f = std::forward<Cont>(c); }

QPointF operator() (const QPointF &new_point) {
m_point.setX(m_point.x() * .99 + new_point.x() * .01);
m_point.setY(m_point.y() * .99 + new_point.y() * .01);
return m_point;

}

private:
std::function<void(QPointF)> _f;
QPointF m_point;

};

55



Reactive Continuations Ranges Streams Epilogue

Stateful function objects

56



Reactive Continuations Ranges Streams Epilogue

Filter

bool pointFilter(const QPointF &point) {
return int(point.y()) % 100 == 0;

}

events >>=
filter(predicate) >>=

. . .

57



Reactive Continuations Ranges Streams Epilogue

Flat map

template <typename Func, typename Cont>
struct flatmap_cont {

flatmap_cont(Func f, Cont c)
: f(f)
, c(c)

{
}

template <typename InType>
void operator () (const InType &in) {

boost::for_each(f(in), c);
}

Func f;
Cont c;

};
58



Reactive Continuations Ranges Streams Epilogue

Flat map
class more_precision {
public:

more_precision() { }

template <typename Cont>
void then(Cont &&c) { _f = std::forward<Cont>(c); }

std::vector<QPointF> operator() (const QPointF &new_point) {
std::vector<QPointF> result;

int stepX = (m_previous_point.x() < new_point.x()) ? 1 : -1;
for (int i = (int)m_previous_point.x(); i != (int)new_point.x(); i += stepX) {

result.emplace_back(i, m_previous_point.y());
}

int stepY = (m_previous_point.y() < new_point.y()) ? 1 : -1;
for (int i = (int)m_previous_point.y(); i != (int)new_point.y(); i += stepY) {

result.emplace_back(new_point.x(), i);
}

m_previous_point = new_point;
return result;

}

private:
std::function<void(QPointF)> _f;
QPointF m_previous_point;

};

59



Reactive Continuations Ranges Streams Epilogue

Answers? Questions! Questions? Answers!

Kudos:

Friends at KDE, Dr Saša Malkov

Worth reading and watching:

Iterators Must Go, Andrei Alexandrescu
Value Semantics and Range Algorithms, Chandler Carruth
Systematic Error Handling in C++, Andrei Alexandrescu
Ranges proposal, Eric Niebler
Reactive manifesto, Books on Erlang or Scala/Akka

60


	Reactive
	What is reactive?

	Continuations
	Concurrency
	Futures

	Ranges
	STL algorithms
	Ranges

	Streams
	Futures, again


